Learn R Programming

ks (version 1.3.2)

ise, mise, amise: ISE, MISE and AMISE of kernel density estimates for normal mixture densities

Description

The global errors ISE (Integrated Squared Error), MISE (Mean Integrated Squared Error) of kernel density estimates for normal densities, for 2- to 6-dimensional data, and and AMISE (Asymptotic Mean Integrated Squared Error) fpr 2-dimensional data.

Usage

ise.mixt(x, H, mus, Sigmas, props)  
mise.mixt(H, mus, Sigmas, props, samp)
amise.mixt(H, mus, Sigmas, props, samp)

Arguments

x
matrix of data values
H
bandwidth matrix
mus
(stacked) matrix of mean vectors
Sigmas
(stacked) matrix of variance matrices
props
vector of mixing proportions
samp
sample size

Value

  • ISE, MISE or AMISE value.

Details

For normal mixture densities, ISE and MISE have exact formulas for all dimensions, and AMISE has an exact form for 2 dimensions. See Wand & Jones (1995).

References

Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall. London.

Examples

Run this code
samp <- 50
d <- 3
mus <- rbind(rep(0,d), rep(1,d))
Sigmas <- 0.25*rbind(diag(d), diag(d))
props <- c(2/3, 1/3)
x <- rmvnorm.mixt(samp, mus, Sigmas, props)
H <- Hpi(x)
ise.mixt(x, H, mus, Sigmas, props)
mise.mixt(H, mus, Sigmas, props, samp)

Run the code above in your browser using DataLab